You are given two integer arrays nums1
and nums2
of lengths m
and n
respectively. nums1
and nums2
represent the digits of two numbers. You are also given an integer k
.
Create the maximum number of length k <= m + n
from digits of the two numbers. The relative order of the digits from the same array must be preserved.
Return an array of the k
digits representing the answer.
Example 1:
Input: nums1 = [3,4,6,5], nums2 = [9,1,2,5,8,3], k = 5 Output: [9,8,6,5,3]
Example 2:
Input: nums1 = [6,7], nums2 = [6,0,4], k = 5 Output: [6,7,6,0,4]
Example 3:
Input: nums1 = [3,9], nums2 = [8,9], k = 3 Output: [9,8,9]
Constraints:
m == nums1.length
n == nums2.length
1 <= m, n <= 500
0 <= nums1[i], nums2[i] <= 9
1 <= k <= m + n
The core challenge of this problem is to create the largest possible number of length k
by selecting digits from two given arrays while maintaining the relative order of digits from each array. This problem is significant in scenarios where we need to merge sequences optimally, such as in merging sorted lists or combining results from different sources.
Potential pitfalls include not maintaining the relative order of digits from the same array and not considering all possible combinations of digits from both arrays.
To solve this problem, we need to consider the following steps:
i
from nums1
and length k-i
from nums2
for all valid i
.k
.We will start with a naive approach and then optimize it.
The naive approach would involve generating all possible combinations of digits from both arrays and then selecting the largest one. However, this approach is not feasible due to its high time complexity.
We can optimize the solution by breaking it down into smaller subproblems:
import java.util.*;
public class CreateMaximumNumber {
// Function to get the maximum number of length k from a single array
private int[] maxNumberFromSingleArray(int[] nums, int k) {
int n = nums.length;
int[] result = new int[k];
int j = 0;
for (int i = 0; i < n; i++) {
while (j > 0 && n - i + j > k && result[j - 1] < nums[i]) {
j--;
}
if (j < k) {
result[j++] = nums[i];
}
}
return result;
}
// Function to merge two sequences to form the largest possible sequence
private int[] merge(int[] nums1, int[] nums2, int k) {
int[] result = new int[k];
int i = 0, j = 0, r = 0;
while (r < k) {
if (greater(nums1, i, nums2, j)) {
result[r++] = nums1[i++];
} else {
result[r++] = nums2[j++];
}
}
return result;
}
// Helper function to compare two sequences
private boolean greater(int[] nums1, int i, int[] nums2, int j) {
while (i < nums1.length && j < nums2.length && nums1[i] == nums2[j]) {
i++;
j++;
}
return j == nums2.length || (i < nums1.length && nums1[i] > nums2[j]);
}
// Main function to create the maximum number of length k
public int[] maxNumber(int[] nums1, int[] nums2, int k) {
int m = nums1.length;
int n = nums2.length;
int[] maxResult = new int[k];
for (int i = Math.max(0, k - n); i <= Math.min(k, m); i++) {
int[] candidate = merge(maxNumberFromSingleArray(nums1, i), maxNumberFromSingleArray(nums2, k - i), k);
if (greater(candidate, 0, maxResult, 0)) {
maxResult = candidate;
}
}
return maxResult;
}
public static void main(String[] args) {
CreateMaximumNumber solution = new CreateMaximumNumber();
int[] nums1 = {3, 4, 6, 5};
int[] nums2 = {9, 1, 2, 5, 8, 3};
int k = 5;
System.out.println(Arrays.toString(solution.maxNumber(nums1, nums2, k))); // Output: [9, 8, 6, 5, 3]
}
}
The time complexity of the solution is O((m+n)^3)
due to the nested loops and comparisons. The space complexity is O(k)
for storing the result.
Consider edge cases such as:
k
.Test these cases to ensure the solution handles them correctly.
To test the solution comprehensively, use a variety of test cases:
Use testing frameworks like JUnit for automated testing.
When approaching such problems:
Understanding and solving this problem helps in developing skills for merging sequences optimally. Practice and explore further to master such problems.
For further reading and practice: